China factory High Quality Drive Drum Bend Drum Head Pulley Belt Conveyor Idler System engine pulley

Product Description

Conveyor Pulley is manufactured as per customer requirement,with main design under national standard,quality inspection focusing on shaft core,welded joint,rubber material and hardness,dynamic balance and so on for longer product life time.

Drive/Head Pulley – A conveyor pulley used for the purpose of driving a conveyor belt. Typically mounted in external bearings and driven by an external drive source.
Return/Tail Pulley – A conveyor pulley used for the purpose of redirecting a conveyor belt back to the drive pulley. Tail pulleys can utilize internal bearings or can be mounted in external bearings and are typically located at the end of the conveyor bed. Tail pulleys commonly serve the purpose of a Take-Up pulley on conveyors of shorter lengths.
Snub Pulley – A conveyor pulley used to increase belt wrap around a drive pulley, typically for the purpose of improving traction.
Take-Up Pulley – A conveyor pulley used to remove slack and provide tension to a conveyor belt. Take-Up pulleys are more common to conveyors of longer lengths.
Bend Pulley – A conveyor pulley used to redirect the belt and provide belt tension where bends occur in the conveyor system.

The specification of pulley:
Drive Drum: is the main component of power transmission. The drum can be divided into single drum (the angle of the belt to the drum is 210 ° ~ 230 °) , Double Drum (the angle of the belt to the drum is up to 350 °) and
multi-drum (used for high power) . 
Bend Drum: is used for changing the running direction of the conveyor belt or increasing the surrounding angle of the conveyor belt on the driving roller, and the roller adopts a smooth rubber surface . The drum shaft shall be forgings and shall be nondestructive tested and the inspection report shall be provided. 
The Various Surface of Pulley:
Conveyor pulley lagging is essential to improve conveyor belt performance, the combination of our pulley lagging can reduces belt slippage, improve tracking and extends life of belt, bearing & other components.

PLAIN LAGGING:This style of finish is suitable for any pulley in the conveyor system where watershed is not necessary. It provides additional protection against belt wear, therefore, increasing the life of the pulley.
DIAMOND GROOVE LAGGING:This is the standard pattern on all Specdrum lagged conveyor pulleys. It is primarily used for reversing conveyor drive pulleys. It is also often used to allow bi-directional pulley rotation, and the pattern allows water to be dispersed away from the belt.
HERRINGBONE LAGGING:The herringbone pattern’s grooves are in the direction of rotation, and offers superior tractive properties. Each groove allows water and other liquids to escape between the face of the drum pulley and the belt. Herringbone grooved pulleys are directional and should be applied to the conveyor in a manner in which the grooves point toward the direction of the belt travel.
CHEVRON LAGGING:Some customers specify that the points of the groove should meet – as done in Chevron styled lagging. As before with the herringbone style, this would be used on drive drum pulleys and should be fitted in the correct manner, so as to allow proper use of the pattern and water dispersion also.
CERAMIC LAGGING:The Ceramic tiles are moulded into the lagging which is then cold bonded to the drum pulley. This style of finish allows excellent traction and reduces slippage, meaning that the belt tension is lower and, therefore as a result, increases the life of the pulley.
WELD-ON STRIP LAGGING: Weld-On Strip Lagging can be applied to bi-directional pulleys, and also has a finish to allow the easy dispersion of water or any fluids between the drum pulley and the belt.

The Components of Pulley:
 

1. Drum or Shell:The drum is the portion of the pulley in direct contact with the belt. The shell is fabricated from either a rolled sheet of steel or from hollow steel tubing.
2.Diaphragm Plates: The diaphragm or end plates of a pulley are circular discs which are fabricated from thick steel plate and which are welded into the shell at each end, to strengthen the drum.The end plates are bored in their centre to accommodate the pulley Shaft and the hubs for the pulley locking elements.
3.Shaft :The shaft is designed to accommodate all the applied forces from the belt and / or the drive unit, with minimum deflection. The shaft is located and locked to the hubs of the end discs by means of a locking elements. The shaft and hence pulley shafts are often stepped.
4.Locking Elements:These are high-precision manufactured items which are fitted over the shaft and into the pulley hubs. The locking elements attach the pulley firmly to the shaft via the end plates.
5.Hubs:The hubs are fabricated and machined housings which are welded into the end plates.
6.LaggingIt is sometimes necessary or desirable to improve the friction between the conveyor belt and the pulley in order to improve the torque that can be transmitted through a drive pulley. Improved traction over a pulley also assists with the training of the belt. In such cases pulley drum surfaces are `lagged` or covered in a rubberized material.
7.Bearing: Bearings used for conveyor pulleys are generally spherical roller bearings, chosen for their radial and axial load supporting characteristics. The bearings are self-aligning relative to their raceways, which means that the bearings can be ‘misaligned’ relative to the shaft and plummer blocks, to a certain degree. In practical terms this implies that the bending of the shaft under loaded conditions as well as minor misalignment of the pulley support structure, can be accommodated by the bearing.

The Production Process of Pulley: Our Products:

1.Different types of Laggings can meet all kinds of complex engineering requirements.
2.Advanced welding technology ensures the connection strength between Shell and End-Disk.
3.High-strength Locking Elements can satisfy torque and bending requirements.
4.T-shape End-Discs provide highest performance and reliability.
5.The standardized Bearing Assembly makes it more convenient for the end user to replace it.
6.Excellent raw material and advanced processing technology enable the shaft can withstand enough torque.
7.Low maintenance for continued operation and low total cost of ownership.
8.Scientific design process incorporating Finite Element Analysis.

Our Workshop:

MACHINE:We have advanced laser cutting machines, a complete set of intelligent sheet metal forming equipment, robot welding and other processing and testing equipment.
PAINTING:  We use electrostatic spraying to ensure variety, model and quality of coatings, thinners and curing agents should meet the design requirements and the current relevant national standards. The steel surface should be free of welding slag, welding scars, dust, oil, water and burrs before painting. No mispainting or omission, and the coating should be free of peeling and rust. Inspection method: observation and inspection. Uniform brushing, consistent color,  no wrinkles,sagging and bubbles, good adhesion, and the color separation line should be clear and neat.
DELIVERY:The goods and product factory certificate, installation and use instructions and drawings, a full set of connectors. After the equipment arrives at the site, the company immediately arranges professional and technical personnel to guide the installation on site to provide customers with satisfactory services.
PACKAGE:Packed with steel frame or wooden box, according to the standardfor trade export or according to the special requirements of customers.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Surface Treatment: Baking Paint
Motor Type: Frequency Control Motor
Installation: Horizontal
Carrying Type: Light, Medium, Heavy
Light Bearing Aperture: 80-100mm
Samples:
US$ 40/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

idler pulley

Can idler pulleys be used in DIY projects and home improvement tasks?

Yes, idler pulleys can be used in various DIY projects and home improvement tasks. Here’s a detailed explanation of their potential applications in such endeavors:

1. Belt-driven Systems:

Idler pulleys are commonly used in belt-driven systems in DIY projects and home improvement tasks. For example, if you are building a homemade conveyor belt for material transportation or a power transmission system for a small workshop setup, idler pulleys can play a crucial role. They help guide the belt, maintain proper tension, and ensure efficient power transmission between the driving and driven pulleys.

2. Mechanical Repairs:

Idler pulleys can be utilized in mechanical repairs around the house. If you have a malfunctioning or worn-out idler pulley in a lawnmower, garage door opener, or other mechanical equipment, replacing it with a new idler pulley can help restore the proper functioning of the system. Idler pulleys are often used in these applications to control belt tension, reduce vibration, and maintain smooth operation.

3. Exercise Equipment:

Many DIY enthusiasts and homeowners build their exercise equipment, such as weightlifting machines or running treadmills. Idler pulleys can be incorporated into these projects to guide cables or belts, ensuring smooth movement and proper tension. They contribute to the safe and effective operation of the exercise equipment.

4. Garage Storage Systems:

In DIY garage storage systems, idler pulleys can be utilized to facilitate smooth movement and easy access. For example, if you are building an overhead storage system with pulleys and ropes to lift and lower items, idler pulleys can help guide the ropes and maintain tension, ensuring the system operates smoothly and securely.

5. Customized Machinery:

If you have a specific DIY project that involves customized machinery or moving parts, idler pulleys can be employed to support and guide belts or cables. Whether you are constructing a homemade CNC machine, a 3D printer, or a robotic arm, idler pulleys can assist in the precise movement and control of the belts or cables, enhancing the overall functionality of the system.

6. Arts and Crafts:

Idler pulleys can even find applications in arts and crafts projects. For instance, if you are creating a kinetic sculpture or a mobile artwork piece, idler pulleys can be used to guide and control the movement of strings, wires, or other flexible materials. They add a dynamic element to the artwork, enabling smooth and captivating motion.

When incorporating idler pulleys into DIY projects or home improvement tasks, it is important to consider factors such as proper alignment, tensioning, and maintenance. Ensuring that the idler pulleys are correctly sized, securely mounted, and appropriately tensioned will contribute to their effective functioning within the project.

Overall, idler pulleys offer versatility and can be valuable components in a wide range of DIY projects and home improvement tasks, providing support, guidance, and tensioning for belts, cables, and other flexible materials.

idler pulley

Are there different types of idler pulleys, and how do they vary in applications?

Yes, there are different types of idler pulleys that vary in design and application. Here’s a detailed explanation of the various types of idler pulleys and how they differ in their applications:

1. Flat Belt Idler Pulleys:

Flat belt idler pulleys have a flat surface and are commonly used in applications where flat belts are used for power transmission. They are typically used in industrial machinery, conveyor systems, and agricultural equipment. Flat belt idler pulleys come in various diameters and are designed to guide and support the flat belt, ensuring proper tension and alignment.

2. V-Belt Idler Pulleys:

V-belt idler pulleys are designed specifically for V-belt drives, which are widely used in automotive and industrial applications. These pulleys have a V-shaped groove that matches the cross-section of the V-belts, ensuring proper engagement and power transmission. V-belt idler pulleys are used in automotive engines, HVAC systems, and various industrial machinery.

3. Timing Belt Idler Pulleys:

Timing belt idler pulleys are used in applications where timing belts are employed for synchronous power transmission. These pulleys have specially designed teeth or grooves that mate with the teeth on the timing belt, allowing precise motion control and synchronization. Timing belt idler pulleys are commonly found in automotive engines, CNC machines, robotics, and other precision machinery.

4. Chain Idler Pulleys:

Chain idler pulleys are used in systems that utilize chains for power transmission. These pulleys have grooves or teeth that match the profile of the chain, providing proper engagement and tension. Chain idler pulleys are commonly employed in bicycles, motorcycles, industrial machinery, and conveyor systems using roller chains or timing chains.

5. Tensioner Pulleys:

Tensioner pulleys are a specialized type of idler pulleys designed specifically for maintaining proper tension in automotive accessory drive systems. They are often used in conjunction with serpentine belts or multi-ribbed belts. Tensioner pulleys incorporate a spring-loaded mechanism that automatically adjusts the tension of the belt. These pulleys are critical for reliable operation and proper belt tension in automotive engines.

6. Specialty Idler Pulleys:

In addition to the commonly used idler pulleys mentioned above, there are various specialty idler pulleys designed for specific applications. These may include idler pulleys with unique shapes, sizes, or specialized features to meet the requirements of specific industries or equipment. Specialty idler pulleys can be found in applications such as printing presses, textile machinery, packaging equipment, and more.

The choice of idler pulley type depends on the specific application requirements, such as the type of belt or chain used, power transmission needs, space constraints, and environmental factors. Proper selection of the appropriate idler pulley ensures optimal performance, reliable power transmission, and extended system lifespan.

idler pulley

How does the size and diameter of an idler pulley affect its performance?

The size and diameter of an idler pulley play a significant role in determining its performance characteristics. Here’s a detailed explanation of how the size and diameter of an idler pulley affect its performance:

1. Tension and Belt Engagement:

The size and diameter of an idler pulley impact the tension and engagement of the belt. A larger idler pulley will create more belt wrap around its circumference, resulting in increased belt contact and improved grip. This helps to maintain proper tension in the belt and prevent slippage, especially in high-torque applications. Conversely, a smaller idler pulley may have less belt wrap, leading to reduced grip and potentially lower tension.

2. Belt Speed:

The size and diameter of an idler pulley affect the speed at which the belt travels. A larger idler pulley will cover a greater distance per revolution, resulting in a higher belt speed. This can be advantageous in applications where increased speed is desired. Conversely, a smaller idler pulley will cover a shorter distance per revolution, leading to a slower belt speed.

3. Belt Flexibility:

The size and diameter of an idler pulley impact the flexibility of the belt. A larger idler pulley allows for a larger bend radius, reducing the stress on the belt and improving its durability. It also minimizes the risk of excessive bending or flexing that could lead to premature wear or failure. In contrast, a smaller idler pulley may require the belt to bend more sharply, potentially increasing the risk of damage or wear.

4. System Clearance:

The size and diameter of an idler pulley affect the overall clearance in the mechanical system. In tight spaces or constrained environments, a smaller idler pulley may be preferred, as it requires less clearance. Conversely, a larger idler pulley may require additional space to accommodate its size.

5. Load Distribution:

The size and diameter of an idler pulley impact its ability to distribute the load across the belt. A larger idler pulley can distribute the load over a larger surface area, reducing the stress on the belt and other components. It helps to minimize wear and prolong the life of the system. On the other hand, a smaller idler pulley concentrates the load on a smaller area, potentially increasing the risk of localized wear or failure.

6. Bearing Life and Friction:

The size and diameter of an idler pulley influence the bearing life and friction within the system. Larger idler pulleys typically have larger bearings, which can handle higher loads and exhibit improved durability. They also tend to generate lower friction, leading to reduced heat and wear. In contrast, smaller idler pulleys may have smaller bearings that may have limitations in terms of load capacity and friction.

It’s important to note that the specific requirements for size and diameter of an idler pulley will depend on the application and the intended function within the mechanical system. Factors such as belt type, load requirements, speed, and space constraints should be considered when selecting the appropriate size and diameter of an idler pulley for optimal performance.

China factory High Quality Drive Drum Bend Drum Head Pulley Belt Conveyor Idler System   engine pulleyChina factory High Quality Drive Drum Bend Drum Head Pulley Belt Conveyor Idler System   engine pulley
editor by CX

2024-01-08

Recent Posts