Product Description
High Precision Mechanical Synchronous Smooth Idler Pulley for New Energy Industry
Synchronous belt pulley transmission is composed of an annular belt with equidistant teeth on the inner peripheral surface and a belt pulley with corresponding teeth. During operation, the belt teeth mesh with the tooth slots of the belt pulley to transmit motion and power. It is a new belt transmission that integrates the respective advantages of belt transmission, chain transmission and gear transmission.
Product Parameters
Product | standard timing belt pulley & idler pulley |
Customized | OEM, drawings or samples customized |
Teeth type | Normal Torque Drive Type:MXL,XL,L,H,XH,XXH High Torque Drive Type:S2M,S3M,S5M,S8M,HTD2M,HTD3M,HTD5M,HTD8M,P2M,P3M,P5M,P8M High Precision Position Drive Type:2GT,3GT,5GT,8YU Light Load Drive Type:T5,T10,T20 Heavy Load Drive Type:AT5,AT10,AT20 |
Basic shape | Type A,Type B,Type D,Type E,Type F,Type K |
Adaption | Adapt to 1/4 inch,5/16 inch,1/2 inch, 3/8inch, 2/25inch, 1/5inch belt |
surface treatment | Natural color anodizing,Black anodizing,Hard anodizing,Ni-plating,Blackening |
Material | 6061(aluminum),S45C(45# steel),SUS304(Stainless steel) |
Bore | Pilot bore, Taper bore and Customized bore. |
Tolerance Control | Outer diameter ±0.005mm Length dimension ±0.05mm |
Standard | DIN, ISO/GB, AGMA, JIS |
Teeth Accuracy | DIN Class 4, ISO/GB Classs 4, AGMA Class 13, JIS Class 0 |
Weight | Max 15Tons |
testing equipment | projecting apparatus,salt spray test,durometer,and coating thickness tester,2D projector |
producing equipment | CNC machine,automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc. |
Machining Process | Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching,Gear Shaving, Gear Grinding and Gear Lapping |
Application industry | Robot industry,Medical industry,Making machine industry,Automation industry,3C industry equipment,Packaging industry,UAV industry,New energy industry. |
Company Profile
Packaging & Shipping
lead time | 10-15 working days as usual,30days in busy season,it will based on the detailed order quantity |
Delivery of samples | by DHL,Fedex,UPS,TNT,EMS |
FAQ
Main markets | Southeast Asia, North America, Eastern Europe, Mid-East, West Europe |
How to order | *You send us drawing or sample |
*We carry through project assessment | |
*We give you our design for your confirmation | |
*We make the sample and send it to you after you confirmed our design | |
*You confirm the sample then place an order and pay us 30% deposit | |
*We start producing | |
*When the goods is done,you pay us the balance after you confirmed pictures or tracking numbers | |
*Trade is done,thank you! |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO |
---|---|
Pulley Sizes: | Type A |
Manufacturing Process: | Forging |
Material: | Stainless Steel |
Surface Treatment: | Polishing |
Application: | Machinery Parts |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can idler pulleys be used in DIY projects and home improvement tasks?
Yes, idler pulleys can be used in various DIY projects and home improvement tasks. Here’s a detailed explanation of their potential applications in such endeavors:
1. Belt-driven Systems:
Idler pulleys are commonly used in belt-driven systems in DIY projects and home improvement tasks. For example, if you are building a homemade conveyor belt for material transportation or a power transmission system for a small workshop setup, idler pulleys can play a crucial role. They help guide the belt, maintain proper tension, and ensure efficient power transmission between the driving and driven pulleys.
2. Mechanical Repairs:
Idler pulleys can be utilized in mechanical repairs around the house. If you have a malfunctioning or worn-out idler pulley in a lawnmower, garage door opener, or other mechanical equipment, replacing it with a new idler pulley can help restore the proper functioning of the system. Idler pulleys are often used in these applications to control belt tension, reduce vibration, and maintain smooth operation.
3. Exercise Equipment:
Many DIY enthusiasts and homeowners build their exercise equipment, such as weightlifting machines or running treadmills. Idler pulleys can be incorporated into these projects to guide cables or belts, ensuring smooth movement and proper tension. They contribute to the safe and effective operation of the exercise equipment.
4. Garage Storage Systems:
In DIY garage storage systems, idler pulleys can be utilized to facilitate smooth movement and easy access. For example, if you are building an overhead storage system with pulleys and ropes to lift and lower items, idler pulleys can help guide the ropes and maintain tension, ensuring the system operates smoothly and securely.
5. Customized Machinery:
If you have a specific DIY project that involves customized machinery or moving parts, idler pulleys can be employed to support and guide belts or cables. Whether you are constructing a homemade CNC machine, a 3D printer, or a robotic arm, idler pulleys can assist in the precise movement and control of the belts or cables, enhancing the overall functionality of the system.
6. Arts and Crafts:
Idler pulleys can even find applications in arts and crafts projects. For instance, if you are creating a kinetic sculpture or a mobile artwork piece, idler pulleys can be used to guide and control the movement of strings, wires, or other flexible materials. They add a dynamic element to the artwork, enabling smooth and captivating motion.
When incorporating idler pulleys into DIY projects or home improvement tasks, it is important to consider factors such as proper alignment, tensioning, and maintenance. Ensuring that the idler pulleys are correctly sized, securely mounted, and appropriately tensioned will contribute to their effective functioning within the project.
Overall, idler pulleys offer versatility and can be valuable components in a wide range of DIY projects and home improvement tasks, providing support, guidance, and tensioning for belts, cables, and other flexible materials.
What maintenance procedures are necessary to ensure the reliability of idler pulleys?
Maintenance procedures are essential to ensure the reliability and longevity of idler pulleys. Here’s a detailed explanation of the maintenance procedures necessary to ensure the reliability of idler pulleys:
1. Regular Inspection:
Regular visual inspections of idler pulleys are crucial to identify any signs of wear, damage, or misalignment. Inspect the pulleys for cracks, excessive wear on the grooves, or any unevenness in the surface. Also, check for proper alignment and ensure that the pulley spins freely without any wobbling. Regular inspections help detect early warning signs and allow for timely maintenance or replacement.
2. Lubrication:
Proper lubrication of idler pulleys is important to minimize friction and reduce wear. Refer to the manufacturer’s guidelines or specifications to determine the appropriate lubricant and lubrication intervals. Apply the lubricant to the pulley bearings as recommended, ensuring that the lubrication reaches all necessary points. Adequate lubrication helps maintain smooth rotation and prevents premature bearing failure.
3. Tension Adjustment:
Check and adjust the tension of the belts or chains guided by the idler pulleys as per the manufacturer’s recommendations. Proper tension ensures that the belts or chains remain engaged with the pulleys and prevents slippage. Use tension measuring tools or follow the recommended tensioning procedures to ensure accurate and consistent tension across the system.
4. Cleaning:
Regular cleaning of idler pulleys helps remove dirt, debris, and contaminants that can affect their performance. Use a suitable cleaning method, such as wiping with a clean cloth or using compressed air, to remove accumulated particles. Pay attention to the grooves and surfaces of the pulleys to ensure they are clean and free from any obstructions that could interfere with belt or chain operation.
5. Alignment Checks:
Periodically check the alignment of the idler pulleys with respect to the other pulleys in the system. Misaligned pulleys can cause belt or chain misalignment, leading to increased wear and reduced efficiency. Use alignment tools or techniques to assess and correct any misalignment issues, ensuring that the idler pulleys are properly aligned with the rest of the system.
6. Replacement:
Idler pulleys have a limited lifespan and may eventually require replacement. Follow the manufacturer’s guidelines or industry standards to determine the recommended replacement intervals. Replace idler pulleys that show signs of significant wear, damage, or if they no longer meet the required specifications. Regularly replacing worn-out or damaged idler pulleys helps maintain the reliability and performance of the system.
7. Record Keeping:
Maintain a record of maintenance activities performed on the idler pulleys. This record should include inspection dates, lubrication schedules, tension adjustment details, cleaning procedures, alignment checks, and replacement dates. Keeping accurate records helps track maintenance history, identify patterns, and plan future maintenance activities effectively.
By following these maintenance procedures, you can ensure the reliability of idler pulleys, minimize downtime, and extend their service life. Regular inspections, proper lubrication, tension adjustment, cleaning, alignment checks, replacement when necessary, and maintaining comprehensive records will contribute to the smooth and efficient operation of the idler pulleys and the overall mechanical system.
What is an idler pulley, and what is its role in mechanical systems?
An idler pulley is a type of pulley that is used in mechanical systems to change the direction of a belt or to maintain tension in the belt. It is called an “idler” because it does not transmit power to any other components but instead acts as a guide or support for the belt.
The primary role of an idler pulley is to redirect the path of a belt in a system. It is typically used when the desired path of the belt requires a change in direction or when there is a need to take up slack or maintain proper tension in the belt.
Here are some key functions and roles of an idler pulley in mechanical systems:
1. Belt Direction Change:
An idler pulley can redirect the path of a belt, allowing it to travel around obstacles or change its course. By introducing an idler pulley at a specific location, the belt can be guided along a desired path, enabling efficient power transmission and operation of the system.
2. Belt Tension Maintenance:
Idler pulleys are often used to maintain proper tension in a belt. By incorporating an idler pulley in a belt system, it can take up slack or provide additional tension to ensure optimal power transmission and prevent belt slippage.
3. Belt Length Compensation:
In some systems, the length of the belt may need to be adjusted to accommodate variations in the distance between pulleys or to accommodate different operating conditions. Idler pulleys can be used to compensate for these variations by allowing the belt to be lengthened or shortened as required.
4. Belt Alignment:
Idler pulleys can contribute to maintaining proper belt alignment. By strategically positioning idler pulleys along the belt path, they can help guide the belt and prevent it from drifting or misaligning, ensuring smooth and efficient operation.
5. Noise and Vibration Reduction:
In some cases, idler pulleys can help reduce noise and vibration in a mechanical system. By properly tensioning the belt and minimizing unnecessary movement or oscillation, idler pulleys can contribute to a quieter and more stable operation.
It’s important to note that the specific role and function of an idler pulley can vary depending on the particular mechanical system and its requirements. Proper selection, installation, and maintenance of idler pulleys are crucial to ensure optimal performance, belt longevity, and overall system efficiency.
editor by CX
2024-02-04