Product Description
Conveyor Pulley is manufactured as per customer requirement,with main design under national standard,quality inspection focusing on shaft core,welded joint,rubber material and hardness,dynamic balance and so on for longer product life time.
Drive/Head Pulley – A conveyor pulley used for the purpose of driving a conveyor belt. Typically mounted in external bearings and driven by an external drive source. |
Return/Tail Pulley – A conveyor pulley used for the purpose of redirecting a conveyor belt back to the drive pulley. Tail pulleys can utilize internal bearings or can be mounted in external bearings and are typically located at the end of the conveyor bed. Tail pulleys commonly serve the purpose of a Take-Up pulley on conveyors of shorter lengths. |
Snub Pulley – A conveyor pulley used to increase belt wrap around a drive pulley, typically for the purpose of improving traction. |
Take-Up Pulley – A conveyor pulley used to remove slack and provide tension to a conveyor belt. Take-Up pulleys are more common to conveyors of longer lengths. |
Bend Pulley – A conveyor pulley used to redirect the belt and provide belt tension where bends occur in the conveyor system. |
The specification of pulley:
Drive Drum: is the main component of power transmission. The drum can be divided into single drum (the angle of the belt to the drum is 210 ° ~ 230 °) , Double Drum (the angle of the belt to the drum is up to 350 °) and
multi-drum (used for high power) .
Bend Drum: is used for changing the running direction of the conveyor belt or increasing the surrounding angle of the conveyor belt on the driving roller, and the roller adopts a smooth rubber surface . The drum shaft shall be forgings and shall be nondestructive tested and the inspection report shall be provided.
The Various Surface of Pulley:
Conveyor pulley lagging is essential to improve conveyor belt performance, the combination of our pulley lagging can reduces belt slippage, improve tracking and extends life of belt, bearing & other components.
PLAIN LAGGING:This style of finish is suitable for any pulley in the conveyor system where watershed is not necessary. It provides additional protection against belt wear, therefore, increasing the life of the pulley. |
DIAMOND GROOVE LAGGING:This is the standard pattern on all Specdrum lagged conveyor pulleys. It is primarily used for reversing conveyor drive pulleys. It is also often used to allow bi-directional pulley rotation, and the pattern allows water to be dispersed away from the belt. |
HERRINGBONE LAGGING:The herringbone pattern’s grooves are in the direction of rotation, and offers superior tractive properties. Each groove allows water and other liquids to escape between the face of the drum pulley and the belt. Herringbone grooved pulleys are directional and should be applied to the conveyor in a manner in which the grooves point toward the direction of the belt travel. |
CHEVRON LAGGING:Some customers specify that the points of the groove should meet – as done in Chevron styled lagging. As before with the herringbone style, this would be used on drive drum pulleys and should be fitted in the correct manner, so as to allow proper use of the pattern and water dispersion also. |
CERAMIC LAGGING:The Ceramic tiles are moulded into the lagging which is then cold bonded to the drum pulley. This style of finish allows excellent traction and reduces slippage, meaning that the belt tension is lower and, therefore as a result, increases the life of the pulley. |
WELD-ON STRIP LAGGING: Weld-On Strip Lagging can be applied to bi-directional pulleys, and also has a finish to allow the easy dispersion of water or any fluids between the drum pulley and the belt. |
The Components of Pulley:
1. Drum or Shell:The drum is the portion of the pulley in direct contact with the belt. The shell is fabricated from either a rolled sheet of steel or from hollow steel tubing. |
2.Diaphragm Plates: The diaphragm or end plates of a pulley are circular discs which are fabricated from thick steel plate and which are welded into the shell at each end, to strengthen the drum.The end plates are bored in their centre to accommodate the pulley Shaft and the hubs for the pulley locking elements. |
3.Shaft :The shaft is designed to accommodate all the applied forces from the belt and / or the drive unit, with minimum deflection. The shaft is located and locked to the hubs of the end discs by means of a locking elements. The shaft and hence pulley shafts are often stepped. |
4.Locking Elements:These are high-precision manufactured items which are fitted over the shaft and into the pulley hubs. The locking elements attach the pulley firmly to the shaft via the end plates. |
5.Hubs:The hubs are fabricated and machined housings which are welded into the end plates. |
6.Lagging: It is sometimes necessary or desirable to improve the friction between the conveyor belt and the pulley in order to improve the torque that can be transmitted through a drive pulley. Improved traction over a pulley also assists with the training of the belt. In such cases pulley drum surfaces are `lagged` or covered in a rubberized material. |
7.Bearing: Bearings used for conveyor pulleys are generally spherical roller bearings, chosen for their radial and axial load supporting characteristics. The bearings are self-aligning relative to their raceways, which means that the bearings can be ‘misaligned’ relative to the shaft and plummer blocks, to a certain degree. In practical terms this implies that the bending of the shaft under loaded conditions as well as minor misalignment of the pulley support structure, can be accommodated by the bearing. |
The Production Process of Pulley:Our Products:
1.Different types of Laggings can meet all kinds of complex engineering requirements. |
2.Advanced welding technology ensures the connection strength between Shell and End-Disk. |
3.High-strength Locking Elements can satisfy torque and bending requirements. |
4.T-shape End-Discs provide highest performance and reliability. |
5.The standardized Bearing Assembly makes it more convenient for the end user to replace it. |
6.Excellent raw material and advanced processing technology enable the shaft can withstand enough torque. |
7.Low maintenance for continued operation and low total cost of ownership. |
8.Scientific design process incorporating Finite Element Analysis. |
Our Workshop:
MACHINE:We have advanced laser cutting machines, a complete set of intelligent sheet metal forming equipment, robot welding and other processing and testing equipment. |
PAINTING: We use electrostatic spraying to ensure variety, model and quality of coatings, thinners and curing agents should meet the design requirements and the current relevant national standards. The steel surface should be free of welding slag, welding scars, dust, oil, water and burrs before painting. No mispainting or omission, and the coating should be free of peeling and rust. Inspection method: observation and inspection. Uniform brushing, consistent color, no wrinkles,sagging and bubbles, good adhesion, and the color separation line should be clear and neat. |
DELIVERY:The goods and product factory certificate, installation and use instructions and drawings, a full set of connectors. After the equipment arrives at the site, the company immediately arranges professional and technical personnel to guide the installation on site to provide customers with satisfactory services. |
PACKAGE:Packed with steel frame or wooden box, according to the standardfor trade export or according to the special requirements of customers. |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Carbon Steel |
---|---|
Surface Treatment: | Baking Paint |
Motor Type: | Frequency Control Motor |
Installation: | Horizontal |
Carrying Type: | Light, Medium, Heavy |
Light Bearing Aperture: | 80-100mm |
Samples: |
US$ 40/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What safety considerations should be kept in mind when working with idler pulleys?
Working with idler pulleys requires adherence to proper safety practices to prevent accidents and injuries. Here are some important safety considerations to keep in mind:
1. Lockout/Tagout Procedures:
Prior to any maintenance or repair work involving idler pulleys, follow lockout/tagout procedures to isolate the power source and ensure the equipment is de-energized. This prevents unexpected startup and potential entanglement hazards.
2. Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment, such as safety glasses, gloves, and protective clothing, when working with idler pulleys. PPE helps protect against potential hazards such as flying debris, sharp edges, or accidental contact with rotating parts.
3. Training and Knowledge:
Ensure that personnel working with idler pulleys are trained and knowledgeable about the equipment and its safe operation. They should understand proper installation, maintenance, and adjustment procedures to minimize risks.
4. Equipment Inspection:
Regularly inspect idler pulleys for signs of wear, damage, or misalignment. Replace any worn or damaged pulleys promptly to ensure safe operation and prevent unexpected failures.
5. Proper Guarding:
Ensure that idler pulleys are properly guarded to prevent accidental contact. Install adequate barriers, covers, or shields to prevent fingers, clothing, or other objects from coming into contact with rotating pulleys.
6. Safe Work Practices:
Follow safe work practices when working with idler pulleys. Avoid wearing loose clothing or jewelry that could get caught in the pulleys. Use appropriate tools and techniques when installing or adjusting belts to minimize the risk of injury.
7. Risk Assessment:
Conduct a thorough risk assessment of the work area and the specific tasks involving idler pulleys. Identify potential hazards, such as pinch points, sharp edges, or inadequate lighting, and take appropriate measures to mitigate the risks.
8. Emergency Procedures:
Establish clear emergency procedures in the event of an accident or injury. Ensure that personnel know how to respond to incidents, provide first aid if necessary, and contact medical assistance.
It is important to note that the above safety considerations are general guidelines. Always refer to the specific safety guidelines and recommendations provided by the equipment manufacturer and follow any applicable regulations and standards in your region to ensure the highest level of safety when working with idler pulleys.
How are idler pulleys customized for specific machinery and equipment?
Idler pulleys can be customized to meet the specific requirements of different machinery and equipment. Here’s a detailed explanation of how idler pulleys are customized for specific applications:
1. Size and Diameter:
Idler pulleys are available in a wide range of sizes and diameters. To customize an idler pulley for specific machinery and equipment, the size and diameter can be selected based on factors such as the space available, the desired belt wrap, and the required load-bearing capacity. Larger machinery may require larger idler pulleys to accommodate the size and power requirements, while smaller equipment may require compact idler pulleys to fit within limited spaces.
2. Material Selection:
The choice of material for idler pulleys depends on the specific application. Idler pulleys can be made from various materials, including steel, aluminum, plastic, or composite materials. The material selection depends on factors such as the environment, load capacity, desired weight, and durability requirements. Corrosion-resistant materials may be chosen for applications in harsh or corrosive environments, while lightweight materials may be preferred for applications where weight reduction is critical.
3. Bearing Type:
Idler pulleys utilize bearings to support the rotating shaft. The selection of bearing type depends on factors such as the load capacity, speed, and environmental conditions. Common bearing types include ball bearings, roller bearings, and needle bearings. The choice of bearing type ensures smooth rotation and proper load distribution, contributing to the overall performance and longevity of the idler pulley.
4. Mounting Configuration:
Idler pulleys can be customized with various mounting configurations to suit specific machinery and equipment. The mounting configuration includes options such as bolt-on, flange-mounted, or shaft-mounted designs. The selection depends on the installation requirements and the available mounting points on the equipment. Customizable mounting options allow for easy integration and proper alignment of the idler pulley within the system.
5. Special Features:
In some cases, idler pulleys may require special features or modifications to meet unique application needs. This can include the addition of groove profiles for specific belt types, design modifications for improved belt tracking, or the incorporation of tensioning mechanisms for precise tension adjustment. These customization options ensure that the idler pulleys are optimized for the specific machinery and equipment, resulting in enhanced performance and functionality.
6. Application-Specific Testing:
In certain cases, idler pulleys may undergo application-specific testing to validate their performance and suitability for the intended use. This can include testing for load capacity, rotational speed, temperature resistance, noise levels, and durability. By conducting these tests, manufacturers can ensure that the customized idler pulleys meet the specific requirements and performance expectations of the machinery and equipment.
Customizing idler pulleys for specific machinery and equipment allows for optimal performance, improved efficiency, and increased reliability. By considering factors such as size, material, bearing type, mounting configuration, special features, and conducting application-specific testing, idler pulleys can be tailored to meet the unique needs of different applications.
In which machinery and systems are idler pulleys commonly used?
Idler pulleys find wide applications in various machinery and systems where belt-driven power transmission is employed. Here are some common examples of machinery and systems where idler pulleys are commonly used:
1. Automotive Engines: Idler pulleys are utilized in automotive engines to guide and maintain tension in the accessory belts that drive components such as the alternator, water pump, power steering pump, and air conditioning compressor.
2. Conveyor Systems: Conveyor systems in industries like manufacturing, mining, and logistics use idler pulleys to support and guide the conveyor belts, ensuring smooth movement of materials along the desired path.
3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems often incorporate idler pulleys in the belt drive arrangements to maintain proper tension and alignment of belts driving components like fans, blowers, and compressors.
4. Agricultural Machinery: Various agricultural equipment, such as combines, tractors, and harvesters, employ idler pulleys to guide and tension belts that drive components like belts for power take-off (PTO) systems, augers, and conveyors.
5. Printers and Copiers: Idler pulleys are used in printing and copying machines to guide and tension the belts that drive paper feed mechanisms, rollers, and other components involved in the printing process.
6. Exercise Equipment: Many types of exercise equipment, including treadmills, stationary bikes, and rowing machines, incorporate idler pulleys in their belt drive systems to guide and tension the belts that provide resistance or transmit power.
7. Industrial Machinery: Idler pulleys are commonly found in various industrial machinery applications, such as woodworking machines, textile machinery, packaging equipment, and printing presses, where belt drives are used for power transmission.
8. Power Tools: Belt-driven power tools, such as table saws, drill presses, and band saws, often utilize idler pulleys to redirect the belt path and maintain tension for efficient power transfer.
These are just a few examples, and idler pulleys can be found in a wide range of machinery and systems where belt-driven power transmission is employed. The specific design and size of idler pulleys may vary depending on the application and load requirements of the system.
editor by CX
2024-04-23